Protein folding via
divide-and-conquer
optimization

Ricardo Oliva
collaborators
Silvia Crivelli, Juan Meza

Computational Sciences Division

Vi i .
) 5ime Lawrence Berkeley National Laboratory

Protein-folding via numerical optimization

Working assumption:
The “natural” conformation of a protein corresponds to
a configuration that minimizes an energy potential.

This premise brings the protein-folding problem into the
realm of numerical optimization algorithms (e.g. LBFGS)

Compute an X" that minimizes E(X),
where X is the vector of atom coordinates,
and E is a potential energy function (e.g. Amber).

This is a challenging problem:
* Potential function E is only a model.
« Large-scale problem (size 103--10°)
* Many local minima.

Amber Energy Potential (Model)

E AMBER = E Bonds T E Angles +E Dihedrals T E NonBonded
—\2
E onas = zBi(ri -7
Bonds
—\2
EAnglﬂs = EAI(HI - 61)
Angles
E pinedrats = ED,‘(I +cos(ng; - 9,))
Dihedrals
12 6
E SV, (9] _ofou) |, 94
NonBonded — ij
S, T T T

(Visualization Group)

Color ~ Il A posn. Il
(speed)

Two observations

* atoms move in
clusters.

large displacements

Energy vs iterations

5501

6001

-650]-

700}

750[-

-850

Energy vs iterations

5501

6001

-650]-

700}

750[-

-850

o 500 1000 1500 2000 2500 3000 3500 4000 4500

Energy vs iterations

6001

8001

Observation:
* Atoms appear to move slowly and in small clusters during

numerical minimization process.

Idea: To “optimize” these clusters in parallel, keeping the other
atoms fixed. Is is possible?

Questions:

* How to define clusters -- i.e. how to divide the atoms ?

* What’s the right energy function wrt these atoms.

Defining E w.r.t. a subset of “active atoms”

E(A;X) = Sum of all energy terms in E(X)
that involve at least one atom in A

Array of A : active atoms =

positions X:

Basic “Divide and conquer” (parallel) optimization approach:

1. Distribute atoms among P processors:
Subset A, is active on P;

2. In parallel, each P, minimizes A, using E; = E(A,; ; X)

3. Combine the results of each P,.

Basic “Divide and conquer” (parallel) optimization approach:

A,
DG) O

in P,

inP,

in Py

Basic “Divide and conquer” (parallel) optimization approach:

Basic “Divide and conquer” (parallel) optimization approach:

“Divide and conquer” (parallel) optimization with
global updates:

1. Distribute atoms among P processors:
Subset A, is active on P;

2. In parallel, each P; lowers the energy of A, (i.e. E(A;; X) by

performing a small number & of optimization iterations.

3. Combine results of each P; on each process (“all-gather”).

4. Stop upon convergence, else go to step 2 and repeat.

“Divide and conquer” (parallel) optimization with updates:

Example 1

Protein leOm
593 Atoms
Initial E > le+6

I

Pl & P2
combined

After 50it How do energy values compare when parallel results are combined?

with 2P P=16

P=8
P=4
pP=2
pP=1

Energy @ 50 iterations

How do energy values compare when parallel results are combined? How do energy values compare when parallel results are combined?

P=16
P=8
P=4
pP=2
pP=1

Energy @ 100 iterations Energy @ 500 iterations

Divide and conquer optimization with correction steps: .. R . .
q P P “Divide and conquer” (parallel) optimization with corrections:

1. Distribute atoms among P processors:

Subset A, is active on P; inP,
2. In parallel, each P; lowers A, using E; = E(A, ; X) by in P
performing a small number &, of optimization iterations. -
3. Combine the results of each P,. v in Py
4. Correction Step: Carry on a small number &, of optimization
iterations using on the full system E(X).
in P

5. Stop upon convergence, else go to step 2 and repeat.

1500it

Results on 1eOm (same protein as before)
using k=30, k,=3:

P=8 p=8

B0 B0 0 M 60 60 S0 S0 450 40 0 5 0 150 m 50

Energy @ 3300 iter Time (min)

A caveat:

In parallel step, time of per iteration is reduced,

but (total) energy drop per iteration is also lowered.

Q: can we balance these two effects and get
significant reduction in time for a given energy

Time to reach E = -800

P=16
P=8

P=4
P=2
P=1

o AW A0 S0 40 W AW 0

value? Energy Time (min)
Example 2
Time to reach E = -800
Large protein
(T146)
P=16
P=8 5053 atoms
p=4
P=2
P=1
S Y I B | \ \ \ \ Time to E=-6000
mow ow m @ om @ m @ a0 o 0 W 0 0 50 with k,=30, k,=3 :
Energy Time (min)
P=128 51 min
P=64 49 min

P=1

Configuration@ E=-6000 Conclusions:

* A parallel divide-and-conquer scheme with global corrections
can significantly reduce the computational time required for
lowering the (Amber) energy of some protein configurations.

* A few full-size optimization corrections appear to keep the
parallel optimization in line with its serial equivalent,
even for proteins as large as 5000 atoms.

« In general, the approach has two opposites effects:
1. Reducing the time per iteration, and
2. Reducing the energy drop per iteration,
with increasing number of processors (parallel scale issue).

with P=128

Improvements & future work:
* More testing! (results are preliminary --only a few examples)

* Grouping atoms according to structure (by amino, or per coils,
alpha-helix, or beta sheets) --should improve parallel E reduction.

* Using clusters of “active atoms” (e.g. using ligradientll)
--motivating idea. END

* Partitioning protein by spatial location --some proteins come in
multiple “lumps” of atoms.

¢ Developing better strategy for setting the parameters k, k,
(possibly adapting these during optimization).

